Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes.

نویسندگان

  • V K Gribkoff
  • R L Pieschl
  • T A Wisialowski
  • A N van den Pol
  • F D Yocca
چکیده

Neuropeptide Y (NPY) has been implicated in the phase shifting of circadian rhythms in the hypothalamic suprachiasmatic nucleus (SCN). Using long-term, multiple-neuron recordings, we examined the direct effects and phase-shifting properties of NPY application in rat SCN slices in vitro (n = 453). Application of NPY and peptide YY to SCN slices at circadian time (CT) 7.5-8.5 produced concentration-dependent, reversible inhibition of cell firing and a subsequent significant phase advance. Several lines of evidence indicated that these two effects of NPY were mediated by different receptors. NPY-induced inhibition and phase shifting had different concentration-response relationships and very different phase-response relationships. NPY-induced phase advances, but not inhibition, were blocked by the GABAA antagonist bicuculline, suggesting that NPY-mediated modulation of GABA may be an underlying mechanism whereby NPY phase shifts the circadian clock. Application of the Y2 receptor agonists NPY 13-36 and (Cys2,8-aminooctanoic acid5,24,D-Cys27)-NPY advanced the peak of the circadian rhythm but did not inhibit cell firing. The Y1 and Y5 agonist [Leu31,Pro34]-NPY evoked a substantial inhibition of discharge but did not generate a phase shift. NPY-induced inhibition was not blocked by the specific Y1 antagonist BIBP-3226; the antagonist also had no effect on the timing of the peak of the circadian rhythm. Application of the Y5 agonist [D-Trp32]-NPY produced only direct neuronal inhibition. These are the first data to indicate that at least two functional populations of NPY receptors exist in the SCN, distinguishable on the basis of pharmacology, each mediating a different physiological response to NPY application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuropeptide Y depresses GABA-mediated calcium transients in developing suprachiasmatic nucleus neurons: a novel form of calcium long-term depression.

In contrast to its inhibitory role in mature neurons, GABA can exert excitatory actions in developing neurons, including mediation of increases in cytosolic Ca2+. Modulation of this excitatory activity has not been studied previously. We used Ca2+ digital imaging with Fura-2 to test the hypothesis that neuropeptide Y (NPY) would depress GABA-mediated Ca2+ rises in neurons cultured from the deve...

متن کامل

Suprachiasmatic circadian pacemaker of rat shows two windows of sensitivity to neuropeptide Y in vitro.

The geniculohypothalamic tract carries visual information from the intergeniculate leaflet to the suprachiasmatic circadian pacemaker. NPY, found in this projection, has been shown to affect the phase of behavioral rhythms and influence photic entrainment. We now demonstrate that NPY, when briefly applied to the geniculate projection sites of rat SCN in vitro, induces permanent phase-shifts in ...

متن کامل

Neuropeptide Y-mediated long-term depression of excitatory activity in suprachiasmatic nucleus neurons.

A brief exposure to light can shift the phase of mammalian circadian rhythms by 1 hr or more. Neuropeptide Y (NPY) administration to the hypothalamic suprachiasmatic nucleus, the circadian clock in the brain, also causes a phase shift in circadian rhythms. After a phase shift, the neural clock responds differently to light, suggesting that learning has occurred in neural circuits related to clo...

متن کامل

Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro.

The main mammalian circadian pacemaker is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Gastrin-releasing peptide (GRP) and its receptor (BB(2)) are synthesized by rodent SCN neurons, but the role of GRP in circadian rhythm processes is unknown. In this study, we examined the phase-resetting actions of GRP on the electrical activity rhythms of hamster and rat SCN neurons in v...

متن کامل

Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y.

We have determined, by enzyme immunoassay, daily and circadian patterns of the concentrations of three peptides, which are located in the ventrolateral subdivision of the suprachiasmatic nucleus (SCN): vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and neuropeptide Y (NPY). The contents of VIP and GRP, which are synthesized in the SCN, did not show circadian rhythms i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 1998